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Abstract— When the Convolutional neural network (CNN)
has been introduced for computer vision, many researches
use CNN-based model to perform salient object detection
(SOD). In recent years, The feature pyramid network (FPN)
based structure is more popular for salient object detection
tasks. In this paper, to improve the overall performance of
salient object detection tasks, we propose a dual attention
aggregating network (DAANet), which is an FPN-based deep
convolutional neural network with a dual attention aggregation
module (DAAM) and dilated refinement block (DRB). The
DRB module uses convolutions with different dilation rates to
expand the receptive field. The DAAM considers the salient
map prediction from the low-level output as pseudo-attention
which can efficiently aggregate multi-scale information. The
convolution block attention module (CBAM) in DAAM can
refine the aggregation of pseudo-attention which enables better
performance. We evaluate DAANet on six benchmark datasets
that prove the effectiveness of DAANet and its components.
Our implementation can be found at: https://github.
com/Att100/DAANet.

I. INTRODUCTION

Salient object detection refers to the identification of vital
visual information analog to the human attention mechanism.
In robotics and automation, the salient object detection
model can be used to determine the objective target from
background full of complex content and robots can use the
visual information provided by salient object detection model
to plan the following actions, such as catching or moving
an object. Most of the proposed methods of this computer
vision task have been widely used in film and television
production, and image matting. The early approaches for
salient object detection are usually based on traditional visual
extraction methods. Some of those methods use handcraft
features or filters to extract important regions, and others may
adopt the graph-based method to transfer the computer vision
task to a graph optimization problem. When convolutional
neural networks have been widely used in all kinds of
computer vision tasks [1]–[5], many research works on CNN-
based salient object detection have been released. Before the
introduction of classical image classification networks, such
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as VGG [6] and ResNet [7], many CNN-based approaches
used a simple design with the combination of CNN and
fully connected layers to generate salient masks. Those
early methods usually yield limited performance. Since 2016,
many classical pre-trained image classification models have
been used as feature extraction backbone network in salient
object detection which significantly improves the overall
performance of prediction. In recent years, FPN [8] and U-
Net [9] have become the most popular structure in SOD.
The shortcut connection between the encoders and decoders
enhances the ability of feature aggregation.

However, the encoder-decoder based approach with
straightforward design in decoders is hard to capture the
details of a specific salient region and the drawbacks of the
existing SOD methods motivate us to use dual attention to
remit these issues:

• Several methods are estimated based on an encoder-
decoder structure with straightforward design in de-
coders, leading to a sub-optimal capacity of capturing
the details in a specific salient region.

• Multiple existing salient object detection methods di-
rectly use the feature maps from the backbone encoder
without further processing which results in the limita-
tion of the receptive field.

To ameliorate the aforementioned issues, we proposed a
dual attention aggregation network (DAANet) to enhance the
feature aggregation in decoding stages. DAANet includes a
backbone network as an encoder and several dual attention
aggregating modules (DAAM) as decoders, while the DRB
is between encoders and decoders. The DRB uses several
convolution layers with increasing dilation rates to expand
the receptive field. The DAAM has two attention mechanisms
while one of which is pseudo-attention while it considers the
salient map from the previous decoding stage as attention
weights. Another attention is a modified version of the con-
volution block attention module (CBAM) [10] which refines
the previous aggregation results to enable more accurate
prediction. We also use the combined binary cross entropy
loss and intersection of union loss to improve the supervision.

The main contributions of DAANet are threefold:

• We proposed a novel decoder module for salient ob-
ject detection: a dual attention aggregation module
(DAAM), which can achieve better performance than
baseline models.

• We introduced the dilated refinement block (DRB) for
salient object detection to expand the receptive field and
refine the feature maps output by the backbone encoder.

https://github.com/Att100/DAANet
https://github.com/Att100/DAANet
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Fig. 1. (a) The overall pipeline of DAANet. (b) The structure of Dilated Refinement Block (DRB). (c) The architecture of Dual Attention Aggregation
Module (DAAM) in stages 1, 2, and 3. (d) DAAM in stage 0. (e) Notation description

• We designed and conducted a thorough evaluation and
comparison with twelve methods on six benchmark
datasets, and DAANet can achieve advanced perfor-
mance with a light-weighted configuration.

II. RELATED WORKS

Before the widely using of deep learning techniques, there
already existed a great number of salient object detection
methods such as [11]–[14], which usually use gradient
variation and features to judge whether a pixel belongs
to foreground or background, and some of these works
use simple artificially designed features and algorithms to
generate the estimation. Sai et al. [11] propose a foreground
connectivity measurement to enhance the salient map re-
trieval. Their approach first builds an objectness map by
utilizing the objectness proposals and capturing super-pixels
containing the salient object and then uses their proposed
foreground connectivity measure to assign weight to super-
pixels. Finally, they apply a saliency optimization to combine
the foreground weight and background to get the saliency
map. Wei et al. [12] illustrate that most of the background
area can easily connect to the boundary of the image. On the
contrary, it is difficult for the area belonging to the salient
object to link the image boundary. This motivated them to
redefine the saliency of an image patch as the length of its
shortest path to image boundaries. Yang et al. [13] proposed
a graph-based approach that considers the image as a graph
with super-pixel as nodes. They rank these nodes based on
their similarity to the foreground and background queries
to extract the background area and salient objects. In [14],
Cheng et al. used global contrast as the core methodology to
retrieve a salient map that defines the pixel saliency as the
contrast ratio. They also introduce histogram-based contrast
(HC) which uses color statistics of the input image to define
saliency.

After the widely using of deep convolutional neural net-
work (CNN) in the image classification area, VGG [6] and
ResNet [7], for example, many saliency detection methods
including [15]–[18] use more efficient pre-trained backbone
networks to extract features. When FCN [19] has been intro-
duced, the encoder-decoder structure has been widely used
in salient object detection models. Zhang et al. [15] propose
a bidirectional model with a contextual feature extraction
module that allows the integration of multi-level features and
the bi-directional structure to enhance the message passing
between features at different levels. They also adopt a gate
function to control the passing of information. Hu et al.
[16] introduce a novel model to recurrently aggregate deep
features which can effectively exploit the complementary
information extracted by each layer. They compress the
combination of outputs from each layer and merge the
combination with the feature of each layer to enhance the
discrimination of features and salient regions.

III. DAANET

DAANet uses an FPN-based encoder-decoder structure.
The encoders support various backbone networks, including
ResNet50, VGG16, and MobileNetV2. The decoders are
our proposed DAAMs. When an image is fed into the
network, the pre-trained backbone encoder will generate four
intermediate feature maps and one output, and the output will
then go through the DRB module. After that, it will be fed
into a series of decoders, and each decoder will increase
the resolution of the feature map and reduce the number of
channels. As for the training technique, we apply multi-stage
supervision to improve the converging speed and training
stability. We use a hybrid loss to train our model which is a
combination of IOU loss and BCE loss.



A. Encoder Networks

As mentioned in previous sections, DAANet is a FPN-
liked encoder-decoder network. This fundamental structure
allows us to support and switch different encode networks.
In our implementation, we support ResNet50 [7], VGG16
[6], and MobileNetV2 [20] for training and inference. The
outputs of each encoding stage will be fed into decoders.

The original ResNet-50 network that was designed for
ImageNet has five down-sample stages which reduce the
size of the feature map to 1/32 of the input image before
fully-connected layers, but our DAANet only needs 4 down-
sample stages to produce the four different outputs while the
size of the smallest feature map is 16× 16. To resolve this
issue, we modify several parameters of the two convolution
layers in the last encoding stage. The first convolution layer
mentioned above refers to the second convolution layer in
the first bottle-neck block of the last encoding stage whose
new dilation is (2,2), the new padding values are (1,1), and
the stride values are changes to (1,1). The next convolution
layer refers to the first convolution layer in the down-sample
sub-block of the same bottle-neck block whose strides are
changed to (1,1). The VGG16 for our DAANet has the same
problem and we solve this issue by removing the last max-
pooling layer. As for the MobileNetV2, we reduce the stride
of a convolution layer to (1,1).

B. Dilated Refinement Block (DRB)

Most previous approaches with FPN structure directly use
the feature maps from the backbone network without further
processing which may have difficulty in extracting features
from small objects, which inspired us to design the DRB,
shown in Figure 1 (b). In our approach, we add six additional
layers after the last encoder. increasing dilation rates and
increasing kernel size can both improve the receptive field
and the ability to extract features from small objects. In
order to solve this problem and reduce the computation
complexity, we use depth-wise convolution which means in
this convolution layer, the number of input channels is equal
to the group’s number so that the parameters amount can be
reduced. We also use dilation rates with 1, 2, 3, 4, 5, 1 for
the six layers instead of using the large kernel size to further
reduce the complexity.

C. Dual Attention Aggregation Module (DAAM)

The salient object detection task requires the model to
segment the object with the highest probability to be the
foreground object, whose mechanism is much similar to the
attention technique which motivates us to integrate channels
and spatial attention module (CBAM) [10], the structure as
shown in Figure 2, into the dual attention aggregation module
(DAAM). The architecture of the DAAM is shown in Figure
1 (c). To enhance the attention, we consider the output of a
DAAM as a pseudo-attention which will be multiplied with
the addition of a shortcut and input. Those two attention
constructs are dual attention.

In each DAAM block, the shortcut, and the output together
with the salient map of the previous layer will be accepted as
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Fig. 2. The structure of modified CBAM [10]

inputs while its output will be sent to the next DAAM block.
Firstly, we adopt an element-wise multiplication between
the addition result and the saliency map of the previous
DAAM block which constructed a rough weighted feature.
Secondly, the additional results and the weighted feature will
be concatenated after a Conv2d-Bn-ReLU group while this
group of layers will reduce the channels to half of its inputs.
After that, the features will go through a residual block which
refers to the original bottle-neck design, and then it will
be fed into CBAM to apply more accurate attention. Then
an up-sample operation with a stride equal to 2 is applied
to increase the resolution of the feature map. Finally, there
will be two branches of outputs and one of which will go
through a single convolution layer to build the prediction
logits and another one will be fed into the next DAAM.
These procedures can be formulated as,

ai = f eati−1 + shortcuti (1)
zi = Concat(Conv(ai),Conv(ai ⊙maski−1)) (2)

f eati = UpSample(Attention(Residual(zi))) (3)
maski = Sigmoid(Conv( f eati)) (4)

We also need to remind that the structure shown in Figure
1 (d) indicates the first DAAM decoder which only has a
residual block, an up-sample layer, and a convolution layer
which results from the low-resolution of features and it is
hard to capture the spatial structure of the salient object and
it is no need to apply the dual attention. Then the formulas
can be simplified as,

ai = f eat + shortcuti (5)
f eati = UpSample(Residual(ai)) (6)

maski = Sigmoid(Conv( f eati)) (7)



We observe that the original CBAM is designed for the
backbone network and our design needs to aggregate it in
decoders, the results show that the original CBAM may result
in a significant decrease in MAE which motivates us to make
some modifications. We modify it by removing the max-
pooling layer in the channel attention module, as shown in
Figure 2. The channel attention module of CBAM generates
attention through a global average pooling followed by
two paralleled convolution layers and a sigmoid function.
The spatial attention module retrieves the attention map by
passing the input feature into the max-pooling branch and
average-pooling branch, concatenating them, and following
by a convolution layer with sigmoid activation.

As for our lightweight approach with MobileNetV2 [20]
backbone, we replace the original residual block with the
inverted residual [20], which can significantly decrease the
parameter amount by using a series of depth-wise convolu-
tion.

D. Loss function

The loss functions we used in training are binary cross
entropy (BCE) and the intersection of union (IOU) loss.
The BCE loss is widely used in regression and binary
classification tasks and the IOU loss can add additional
constrain to the supervision of overall structure, while those
functions are shown below:

Lbce =
1

NM

N

∑
n=1

M

∑
i=1

−ti ln(pi)+(1− ti) ln(1− pi) (8)

Liou = 1− 1
N

N

∑
n=1

M
∑

i=1
(ti × pi)

M
∑

i=1
(ti + pi − ti pi)

(9)

in which, M is the total number of pixels, N equals to the
batch size, while ti and pi indicate the label and prediction
of ith pexel. To guarantee the convergence of loss and reduce
the training iterations, we use multistage supervision for
training and the total loss function can be given as:

Ltotal =
4

∑
i=1

βi(α1Lbce +α2Liou) (10)

where α is the weight to balance two different objective
functions, while β is used to balance the contribution of
outputs with different resolutions, 256×256, 128×128, 64×
64, and 32×32. We empirically set β1, β2, β3, and β4 to 1,
0.8, 0.5, and 0.5. We let both α1 and α2 to 1.

E. Implementation Details

We perform the training on a single NVIDIA Tesla V100-
SXM2 16GB GPU. We use the standard train-valid data split
provided by original datasets. As for training and validation
datasets, we train DAANet on DUTS-TR [21] and validate
our DAANet with different configurations on six benchmark
datasets, including DUTS-TE [21], SOD [22], HKU-IS [23],
ECSSD [24], PASCAL-S [25], and DUT-OMRON [13]. We

set the training batch size to 16 and trained 30 epochs for the
model with ResNet50 and 25 epochs with other backbones.
As for the optimizer, we use SGD with an initialized learning
rate of 1e−2, momentum is 0.9, and weight decay is 5e−4.
We also use exponential learning-rate decay with γ equal to
0.85 after each training epoch. We evaluate DAANet on the
test set after every 5 epochs.

IV. EXPERIMENTS

A. Datasets

We train our DAANet on DUTS-TR [21] dataset, and
evaluate on DUTS-TE [21], SOD [22], HKU-IS [23], ECSSD
[24], PASCAL-S [25], and DUT-OMRON [13]. DUTS-TR
has 10,553 images pair in total which is widely used for
training. DUTS-TE has 5,019 images for testing. SOD in-
clude only 300 images while each of them contains complex
semantic information and it is the most difficult benchmark
for validation. HKU-IS contains 4,447 image pairs. ECSSD
contains 1,000 samples for testing. The PASCAL-S dataset
has 850 images. DUT-OMRON has 5,168 images for testing.

B. Evaluation Metrics

We use three measurements to evaluate DAANet: mean
absolute error (MAE) [26], mean F-measure, and PR curve.
The MAE measures average pixel-wise differences between
ground truth and prediction, given a salient ground truth t
and a prediction p, the MAE can be defined as:

MAE =
1

NM

N

∑
n=1

M

∑
i=1

|ti − pi| (11)

The mean F-measure is a weighted harmonic mean of
precision and recall which can be represented as:

mFβ =
(1+β 2)×Precision×Recall

β 2 ×Precision+Recall
(12)

where β 2 is set to 0.3 which follows the widely used
configuration. The PR curve is defined by a series of pre-
cision and recall pairs, each of which is calculated under a
different threshold. We first cast the model output to 0-255
by multiplying the probability output by 255 and then set
256 threshold from 0 to 255, and then plot the PR curve
with those 256 points.

C. Ablation Study

we conduct the ablation study, shown in Table I, on
DAANet’s module compositions, loss function, and back-
bone configurations to evaluate of our approach. We train
the DAANet and baseline model on DUTS-TE under the
setting described in section III-E.

Module composition and loss function: To show the
influence of our proposed module on overall performance
we perform experiments on DAAM, DRB, and IOU loss. We
take FPN+VGG16 as our baseline model. Then we extend the
baseline model with IOU loss, DAAM module, and DRB. As
shown in Table I No. 1 and No. 2, the baseline approach can
achieve an MAE of 0.053 and mFβ is 0.749, and ths MAE is



Fig. 3. Qualitative comparison on DUTS-TE between DAANet-B and previous approaches

TABLE I
ABLATION STUDY ON DIFFERENT MODULE COMPOSITIONS, LOSS

FUNCTION, AND BACKBONE NETWORKS. IOU REPRESENTS IOU LOSS.

No. Backbone FPN configs DUTS-TE
IOU DAAM DRB mFβ MAE

1 VGG16 0.749 0.053
2 VGG16 ✓ 0.773 0.049
3 VGG16 ✓ ✓ 0.792 0.044
4 VGG16 ✓ ✓ ✓ 0.795 0.043
5 ResNet50 ✓ ✓ 0.801 0.042
6 ResNet50 ✓ ✓ ✓ 0.801 0.042
7 MobileNetV2 ✓ ✓ 0.767 0.051
8 MobileNetV2 ✓ ✓ ✓ 0.762 0.052

improved to 0.049 after adopting the IOU loss together with
BCE loss. In experiment No.3, we extend No. 2 with the
proposed DAAM and it can achieve the MAE of 0.044 and
mFβ become 0.792. When applying the DRB module, the
MAE and mFβ can be further improved to 0.043 and 0.795
which can prove the effectiveness of DAAM and DRB.

Experiments on different backbones: To analyze the
performance of our proposed DAAM on different backbone
networks, we perform another two experiments on ResNet50
and MobileNetV2. Table I shows that DAAM with ResNet50
can achieve the best performance on both two metrics. The
configuration with MobileNetv2 can achieve an MAE of
0.051 with only 15.8 MBytes of parameters. When applying
the ResNet50 backbone, the MAE can be improved to 0.042,
and mFβ can reach 0.801. However, adding DRB to the
DAANet with MobileNetV2 backbone leads to the decrease
of overall performance which may results from the limited
feature extraction ability of backbone network.

D. Qualitative Evaluation

In order to intuitively evaluate the performance of
DAANet, we conduct the qualitative evaluation that com-
paring DAANet (ResNet50 backbone) with seven previous
approaches, including BASNet [36], PiCANet [33], BMPM
[15], R3Net+ [37], PAGRN [30], SRM [35] and DGRL



TABLE II
QUANTITATIVE COMPARISON WITH DAANETS (DAANET-A, DAANET-B, DAANET-C) AND 12 OTHER METHODS ON 6 BENCHMARK DATASETS.
THE METRICS INCLUDING MAXIMUM F-MEASURE maxFβ , MEAN F-MEASURE mFβ , AND MAE . WE USE DIFFERENT COLORS TO LABEL THE TOP3

METHOD ON EACH BENCHMARK, RED, GREEN, BLUE INDICATE THE BEST, THE SECOND BEST, AND THE THIRD BEST MODEL RESULTS RESPECTIVELY.

Methods Size(MB) Training Data DUTS-TE [21] HKU-IS [23] SOD [22] DUT-OMRON [13] PASCAL-S [25] ECSSD [24]
Datasets #Images maxFβ ↑ mFβ ↑ MAE ↓ maxFβ ↑ mFβ ↑ MAE ↓ maxFβ ↑ mFβ ↑ MAE ↓ maxFβ ↑ mFβ ↑ MAE ↓ maxFβ ↑ mFβ ↑ MAE ↓ maxFβ ↑ mFβ ↑ MAE ↓

VGG backbone
UCF [27] 117.9 MSRA10K 10,000 0.771 0.629 0.117 0.886 0.808 0.074 0.803 0.699 0.164 0.734 0.613 0.132 0.828 0.706 0.126 0.911 0.840 0.078

Amulet [28] 132.6 MSRA10K 10,000 0.778 0.676 0.085 0.895 0.839 0.052 0.806 0.755 0.141 0.742 0.647 0.098 0.837 0.768 0.098 0.915 0.870 0.059
DSS [29] 447.3 MSRA-B 2,500 0.826 0.791 0.057 0.910 0.895 0.041 0.841 0.793 0.121 0.772 0.729 0.066 0.831 - 0.093 0.916 0.901 0.053

PAGRN [30] - DUTS-TR 10,553 0.855 0.788 0.056 0.918 886 0.048 - - - 0.771 0.711 0.071 0.856 0.807 0.093 0.927 0.894 0.061
BMPM [15] - DUTS-TR 10,553 0.851 0.751 0.049 0.921 0.871 0.039 0.855 0.763 0.107 0.774 0.692 0.064 0.862 0.769 0.074 0.929 0.869 0.045
AFNet [31] 143.9 DUTS-TR 10,553 0.862 0.797 0.046 0.923 0.888 0.036 0.856 0.809 0.109 0.797 0.738 0.057 0.868 0.826 0.071 0.935 0.908 0.042
RAS [32] 81.0 MSRA-B 2,500 0.831 0.755 0.060 0.913 0.871 0.045 0.850 0.799 0.124 0.786 0.713 0.062 0.837 0.785 0.104 0.921 0.889 0.056

PiCANet [33] 153.3 DUTS-TR 10,553 0.851 0.755 0.054 0.921 0.870 0.042 0.853 0.791 0.102 0.794 0.710 0.068 0.868 0.801 0.077 0.931 0.884 0.047
DAANet-A 89.8 DUTS-TR 10,553 0.867 0.795 0.043 0.925 0.890 0.035 0.853 0.751 0.108 0.796 0.737 0.057 0.862 0.776 0.073 0.935 0.882 0.043

ResNet backbone
DGRL [34] 648.0 DUTS-TR 10,553 0.829 0.798 0.050 0.921 0.890 0.036 0.845 0.799 0.104 0.774 0.733 0.062 0.854 0.825 0.072 0.922 0.906 0.041
SRM [35] 213.1 DUTS-TR 10,553 0.827 0.757 0.059 0.906 0.874 0.046 0.843 0.800 0.127 0.769 0.707 0.069 0.847 0.801 0.085 0.917 0.892 0.054

PiCANet-R [33] 197.2 DUTS-TR 10,553 0.860 0.764 0.051 0.919 0.870 0.043 0.853 0.785 0.103 0.803 0.717 0.065 0.857 0.792 0.076 0.935 0.886 0.046
BASNet [36] 348.5 DUTS-TR 10,553 0.859 0.796 0.048 0.928 0.896 0.032 0.851 0.745 0.113 0.805 0.755 0.057 0.862 0.779 0.077 0.942 0.879 0.037
DAANet-B 229.0 DUTS-TR 10,553 0.870 0.801 0.042 0.928 0.892 0.034 0.855 0.757 0.105 0.802 0.748 0.054 0.860 0.781 0.067 0.940 0.886 0.040

MobileNet backbone
DAANet-C 15.8 DUTS-TR 10,553 0.836 0.767 0.051 0.908 0.876 0.043 0.828 0.745 0.123 0.785 0.722 0.061 0.840 0.772 0.082 0.922 0.875 0.051

Fig. 4. Illustration of PR curves (the first column) and F-measure curves (the second column) on five benchmark datasets

[34]. As shown in Figure 3, the results show that DAANet
significantly improves the quality and accuracy of salient
prediction, while DAANet can capture more details and have
fewer wrong predictions than others. In the 2nd row, 4th row,
and 6th row, many previous approaches generated salient
masks have many false-positive cases, such as the area under
the desk, the wall is predicted as a part of the chair, but
DAANet-B can capture the salient object accurately without
these false-positive pixels. In the 5th row, DAANet can
accurately detect the small object. These results illustrate
that DAANet can accurately detect the salient object from
different scenes and it also has the ability to detect small
objects.

E. Quantitative Evaluation
To further analyze the performance DAANet, we per-

form the quantitative evaluation on three configurations of
DAANet with 12 state-of-the-art approaches: UCF [27],
Amulet [28], DSS [29], PAGRN [30], BMPM [15], AFNet
[31], RAS [32], PiCANet [33], DGRL [34], SRM [35],
PiCANet-R [33], and BASNet [36]. The three configurations
of DAANet are represented as follows:

• DAANet-A: VGG16+DAAM+DRB
• DAANet-B: ResNet50+DAAM
• DAANet-C: MobileNetV2+DAAM

The evaluation metrics and datasets have been mentioned
in Section IV-B and IV-A. As shown in Table II, DAANet-
B achieve the best performance on DUTS-TE dataset with
maxFβ by 0.870, mFβ by 0.801. and MAE by 0.042, which
also be in the lead of other models on the other five
benchmark datasets. We also build lightweight approaches
with MobileNetV2 backbone, DAANet-C, which only has
15.8 MB of parameters in total, but it can achieve the MAE
by 0.051, which proves the effectiveness of our proposed
DAAM module. Besides, we evaluate DAANet quantitatively
by using the PR curves and F-measure curves, as shown
in Figure 4, the area under the curve is larger, and the
performance of the model is better. We can see from those
figures that our proposed ResNet50+DAAM (DAANet-B)
has the best performance on most datasets.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a pipeline with a dual attention
aggregation module (DAAM) and dilated refinement block
(DRB) for salient object detection. Our proposed DAANet
is an encoder-decoder structure that uses an ImageNet pre-
trained backbone as an encoder and adopts the FPN archi-
tecture with DAAM modules. The DAAM module can help
the basic FPN structure capture more features and details to
produce salient masks with higher accuracy. The DRB takes



advantage of dilated depth-wise convolution that achieves the
goal of expanding the receptive field and further improving
the performance of DAANet. We evaluate DAANet qualita-
tively and quantitatively, the results validate the effectiveness
of DAANet and its core components.

For future work, we plan to focus on further enhancing
the capabilities of our proposed DAANet and exploring ad-
ditional avenues for improvement in salient object detection.
In addition, we will also focus on domain-specific adapta-
tions of the model and efficient deployment of DAANet on
resource-constrained platforms, such as mobile devices and
embedded systems.
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