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ABSTRACT

In this paper, we propose SYGNet to strengthen the scene
parsing ability of autonomous driving under complicated
road conditions. The SYGNet includes feature extraction
component and SVD-YOLO GhostNet component. The
SVD-YOLO GhostNet component combines Singular Value
Decomposition (SVD), You Only Look Once (YOLO) and
GhostNet. In the feature extraction component, we pro-
pose an algorithm based on VoxelNet to extract point cloud
features and image features. In SVD-YOLO GhostNet com-
ponent, the image data is decomposed by SVD, and we
obtain data with stronger spatial and environmental charac-
teristics. YOLOv3 is used to obtain the future map, then
convert to GhostNet, which is used to realize the real-time
scene parsing by utilizing fewer filters to generate some
intrinsic feature maps. We use KITTI dataset to perform
our experiments and the results show that the SYGNet
is more robust and can further enhance the accuracy of
real-time driving scene parsing. The model, dataset, and
results of the experiments in this paper are available at:
https://github.com/WangHewei16/SYGNet-
for-Real-time-Driving-Scene-Parsing.

Index Terms— autonomous driving, driving scene pars-
ing, SVD, YOLO, GhostNet

1. INTRODUCTION
Autonomous driving technology is the kind of core technol-
ogy applied to the in-vehicle Artificial Intelligence (AI) field,
and also can be defined as the key to realize smart cars, smart
transportation and smart cities. Autonomous driving field
consists of scenario generation [1,2], scene recognition [3–5],
navigation [6], simulation [7], scene parsing [8, 9], predic-
tion [10, 11] and motion estimation [12, 13]. Among them,
scene parsing [14] is a fundamental core part and is used to
obtain information of the vehicle itself and the surrounding
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environment, including vehicles, pedestrians, traffic signs,
obstacles, through various sensors. Based on the current re-
search, a large amount of road condition data and a fusion
of several algorithms are used during a scene parsing algo-
rithm. This is used to create a robust car management system
and thereby achieving smart and auto driving. While the
realization of autonomous start technology requires several
necessary elements, the most important thing is the massive
amount of imaging data which can cover all complex road
conditions information. The second most important aspect is
to use a robust and accurate algorithm, which can accurately
detect complex contour information and dynamic targets.

The usage of autonomous driving has been realized for
years but exhibiting the two shortcomings on many occasions:
(a) Bad usage accuracy in high-speed driving. Autonomous
driving has a higher failure rate for high-speed targets. (b) In
close traffic jams, autonomous driving cannot judge the com-
plicated road conditions ahead. Even the above conditions
are different, but all of them have got a common point which
can be viewed as the inaccuracy of the algorithm. Hence, the
promotion of the scene parsing accuracy becomes necessary.

To solve the aforementioned issues, we propose SYGNet
for improving scene parsing accuracy. SYGNet based on
SVD and YOLO [15] algorithm, and the feature extraction
algorithm will use k-means [16] to detect more characters
of the images, which classifies the image features twice,
and after the feature extraction process completed, combines
GhostNet [17] to complete more accurate scene parsing. Our
main contribution is in improving the scene parsing of au-
tonomous driving, especially the recognition under traffic
jams or complex road conditions.

The main contributions of this paper are as follows:

• A novel autonomous driving recognition model named
SYGNet is proposed wherein we introduce feature
extraction component and combine SVD-YOLO and
GhostNet as a subsequent component.

• SYGNet produces promising results in recognition ac-
curacy, loss value, train and test condition and qualita-
tive figures on KITTI dataset.
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Fig. 1: Architectural overview of proposed Feature Extraction Component in SYGNet.

• The model, diagrams, dataset, and the three types of
experiment’s results in this paper are available at: ht
tps://github.com/WangHewei16/SYGNet-
for-Real-time-Driving-Scene-Parsing.

2. SYGNET

SYGNet is composed of two components: feature extraction
component and SVD-YOLO GhostNet component. The first
component is used to extract important perceptual scene fea-
tures. The second component is responsible for using the
model and training parameters to obtain high accuracy per-
ceptual scene parsing results. Figure 1 demonstrates the ar-
chitectural overview of the feature extraction component in
SYGNet. We will introduce the internal architecture of these
two components in SYGNet in Section 2.1 and Section 2.2 in
detail.

2.1. Feature Extraction Component

The feature extraction learning includes two branches: Li-
DAR Stream and Camera Stream, which extract point cloud
features and image features respectively. For the LiDAR
branch, suppose a 3D object contains N points, and the point
cloud data of the object is (xi, yi, zi, ri), where (xi, yi, zi)
denotes the Cartesian product of the i-th point. The coor-
dinate, ri is the reflection value corresponding to the point.
Similar to VoxelNet [18], we divide the original point cloud
into equal voxel grids, and then uses the spatial coordinates
and the relative offset of random sampling points as the rep-
resentation of each voxel. The relative offset of the points in
the j-th voxel grid is the offset of each point from its centroid,
the centroid of the j-th voxel
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where M is the number of point clouds in the j-th voxel. Al-
though this representation can capture the global spatial infor-
mation of the point cloud, it ignores the local structure infor-
mation of the midpoint of each voxel. In order to capture lo-
cal structural information, this paper designs local directional
features, which can be formulated by the following equation:
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The final representation of the i-th point in the j-th voxel
grid can be formulated as below:

Vin =
{
xj
i , y

j
i , z

j
i , r

j
i , x

j
i − vjx, y

j
i − vjy, z

j
i − vjz, d

j
}

(3)

Next, the new feature representation is provided to the
voxel feature extractor in the feature learning component. The
feature extractor described in this paper is composed of the
voxel feature encoding layer (VFE) proposed in VoxelNet.

The VFE layer designed in VoxelNet is inspired by Point-
Net and it is composed of a large number of stacked full con-
nection layers (FCN). In this paper, the voxel feature coding
Vin of the above design is transformed into the feature space
through FCN. Through the mapping operation, the features
of the internal points of each voxel grid can be aggregated to
encode the surface shape information inside the voxel. Here,
FCN is composed of linear layer, batch normalization (BN)
layer and ReLU layer, when a point wise feature represen-
tation is obtained, element by element maximization is used
(Element-wise MaxPooling) to obtain the local aggregation
features. Finally, in order to strengthen the point level fea-
tures, the point level features output by FCN layer are spliced
to obtain the final point level combination features. The voxel
feature extractor designed in this paper consists of two VEF
layers. For the camera branch, a 2D convolution neural net-
work and ResNet layer are designed as the image feature ex-
tractor to extract the point level features corresponding to the
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point cloud data, which can capture deeper image texture fea-
tures to achieve better modal fusion (cf. Fig. 1).

Then the result of two streams will merge in feature fu-
sion stage, where has an attention fusion layer to deal with the
combined data. After that, it will convert to Region Proposal
Network (RPN) in 3D box estimation stage. The predicted re-
sult will help to get more accurate feature data range. Finally,
the future map with extracted feature will be generated.

2.2. SVD-YOLO GhostNet Component

Massive image data and environmental data can be input as
vector data. Suppose we get the following equation:

Am∗n = Um∗mβm∗nVn∗n
T (4)

where U represents an m ∗ m square matrix, the orthogonal
vector in U is defined as left singular vector. β is an m ∗ n
matrix, the diagonal elements are defined as singular values
except the zero elements, V T is an n∗n square, the orthogonal
vector in V is defined as right singular vector. We multiply
the transpose of a matrix A by A and find the eigenvalues of
ATA, then we can get

(
ATA

)
vi = λivi, where v is the right

singular vector, and the singular value σi =
√
(λi), the left

singular value ui = (Avi)/σi, in this case, σ is the singular
value and u is the singular vector. The singular value σ is
similar to the eigenvalues. In the matrix β, it is also arranged
from large to small, and the reduction of σ is extremely fast,
so we can describe the matrix with the top r singular value.
In this way, part of singular values can be decomposed into:

Am∗n ≈ Um∗rβr∗rVr∗n
T (5)

Hence, put the SVD decomposed data into YOLOv3 neu-
ral network and layer function can be formulated as below:
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Fine-grained features are added through the passthrough
layer in YOLOv2. While in YOLOv3, the feature map ob-
tained from the previous two layers is up-sampled twice, and
the feature map obtained before is connected with the feature
map obtained after the up-sampling which can be given as:

lenout =

[
lenin − (kernelsize − 1) + 1

stride
+ 1

]
(7)

SYGNet performs the same operation again to predict the
new size, benefiting from all the previous calculations and the
fine-grained nature of the network. After finishing the SVD-
YOLO algorithm stage, we connect GhostNet at the end of
the component. GhostNet reduces the computational costs
of deep neural networks by utilizing fewer filters to generate
some intrinsic feature maps, which improves efficiency and
accuracy, and make SYGNet achieves real-time.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

In experiment section, we use the KITTI dataset for training
and prediction. Based on 7400 KITTI dataset images contain-
ing different vehicles and pedestrians, this experiment detects
vehicles and pedestrians in road images. Each image con-
tains upto 15 cars and 30 pedestrians, with various degrees
of occlusion and truncation. Two categories of data ("Car"
and "Pedestrain") in the object detection data in the KITTI
dataset are selected as the dataset for training the neural net-
work. There are 7400 images in total, which are divided into
training set and testing set according to the ratio of 4:1. The
number of iterations is 100000 and the batch size is 64.

3.2. Ablation experiment

This paper adopts an ablation experiment to perform au-
tonomous driving’s accuracy to verify and analyze the effect
of algorithms in our SYGNet. In SVD-YOLO GhostNet com-
ponent, we need to decide which model algorithm we use in
the first stage of this component. Therefore, we perform an
ablation experiment to compare the performance of YOLOv3,
RCNN, SVD-YOLOv2, SVD-RCNN and SVD-YOLOv3 on
KITTI dataset. Fig. 2 illustrates the SVD-YOLOv3 algorithm
achieves the best performance in the whole test process.

Fig. 2: Ablation experiment on the test process of component
in SVD-YOLO GhostNet Component.

Table 1 demonstrates the SVD-YOLOv3 algorithm has
the best performance in five different modes ("Cars", "Peo-
ple", "Edge", "Side" and "Light" mode) in KITTI dataset.
This further confirmed that SVD-YOLOv3 has promising per-
formance in driving scene parsing. Hence, we decide to adopt
SVD-YOLOv3 algorithm in this component.

3.3. Quantitative evaluation

By comparing different methods in three different scene
modes ("Cars", "People" and "Edge" mode) in Table 2, it



(a) Cars mode (b) Human mode (c) Road mode (d) All mode

Fig. 3: We observe that the accuracy of different models in various modes increases with the increase of training time. The
x-axis represents training time unit and y-axis represents accuracy values.

Algorithms Cars People Edge Side Light
YOLOv3 78.9 76.4 77.1 73.4 79.0
RCNN 82.8 79.9 81.1 77.3 82.6

SVD-YOLOv2 86.7 83.4 85.1 81.2 86.2
SVD-RCNN 90.2 87.4 89.0 84.8 86.2

SVD-YOLOv3 94.1 90.9 93.0 88.7 89.8

Table 1: Ablation experiment on the accuracy of component
in SVD-YOLO GhostNet Component.

can be found that the SYGNet has promising performance
in terms of reliability, which verifies the reliability under the
same dataset. In terms of the experimental design, we have
also added feature extraction component to the comparison
methods. This experiment can prove that the accuracy of the
model is higher than that of the other state-of-the-art methods,
and also further prove the importance of feature extraction
component to improve its accuracy.

Algorithms Cars People Edge
GhostNet 78.9 76.4 77.1
RCNN [19] 82.8 79.9 81.1
Feature Extraction - GhostNetv2 86.7 83.4 85.1
Feature Extraction - RCNN 90.2 87.4 89.0
SYGNet 94.1 90.9 93.0

Table 2: Comparison results of different methods.

Figure 3 shows the experiment about the accuracy’s
changes of different models in four different scene modes
("Cars", "People", "Road" and "All" mode) with the increase
of training time. We can see that at the end of the training,
SYGNet has far surpassed other comparison methods. In the
"All mode" scene, SYGNet ranks first among these meth-
ods in the whole process, which can prove the superiority of
SYGNet during the training optimization process.

3.4. Qualitative evaluation

Figure 4 shows the qualitative results on the KITTI dataset.
Different colors mark different categories of objects recog-
nized. We can see that our perceptual recognition effect

reaches the expectation, and we have promising recognition
processing on the edges of the different types of objects.

Fig. 4: Qualitative results on the KITTI dataset. We observe
that the generated segmented masks conform well with the
boundaries of the different objects in the scene.

4. CONCLUSION & FUTURE WORK

This paper studies the autonomous driving scene parsing tech-
nology, analyzes some inherent problems related to training
time of the neural nets, and proposes SYGNet. In the fea-
ture extraction component, we propose an algorithm based
on VoxelNet to extract point cloud features and image fea-
tures. In SVD-YOLO GhostNet component, SVD decom-
pose the image data into YOLOv3, which are used to ob-
tain the future map, then convert to GhostNet, which reduces
the computational costs of deep neural networks to improve
the efficiency. Finally, the experimental results show that
SYGNet can effectively and significantly improve the scene
parsing and recognition ability of autonomous driving under
traffic jams or complex road conditions, so as to make the au-
tonomous driving technology more safe and reliable. In the
future, we will focus on the reuse and fusion of visual trans-
former and combination with DeepBillboard so as to greatly
improve the accuracy of autonomous driving technology.
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