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A B S T R A C T

Stereo matching refers to finding the correspondence of a point in the real world between two different storage
mediums (e.g., intensity images, depth images, three-dimensional points). There are existing stereo matching
methods in the literature, but they exhibit two shortcomings. Firstly, during the feature region extraction
of stereo matching, these methods require measuring the distance of regions, but measuring the texture
distribution of the region is difficult and might lead to the failure of matching. Secondly, the templates used in
these methods are rectangles with a fixed size, while most of the natural images exhibit rich information and
are more suitable for flexible templates. In this paper, we propose an attentional multi-directional convolutional
network (AMDCNet) for circumventing these issues. Our AMDCNet approach consists of three stages: extract the
visual sensitivity factor, construct the multi-directional aggregation template and utilize left–right consistency
detection to optimize. We evaluate our approach using standard images in the Middlebury test dataset, Scene
Flow and KITTI 2015. Experimental results show that AMDCNet can reduce the mismatch rate, and also show
significant improvement in accuracy compared with some classical method. In some scenarios, it surpasses
some advanced methods based on deep learning. The model code, dataset, and results of the experiments in this
paper are available at: https://github.com/WangHewei16/Attentional-Multi-Directional-Convolution-Network.
1. Introduction

Stereo matching, referred to as finding the correspondence of a
point in the real world between two different storage mediums (e.g., in-
tensity images, depth images, three-dimensional points), serves as one
of the depth perception techniques for scene understanding, has wide
applications in the fields of computer vision [1,2], robot industry [3,
4], earth observations [5,6] and automatic driving technology [7,8].
According to the statistics, the eyes are an important channel for us
to obtain external information, and vision can bring us more abundant
information. The visual information reflected by objects is transmitted
to the brain through nerve tissue and will be effectively processed
by the visual cortex of the brain in the way of content and space
respectively. Human eyes have a strong ability to distinguish color
information with a great subjective influence, whereas the perception
of the gray level of the image is very poor. The emergence of machine
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vision gets rid of the influence of human factors where the resolution
of gray can reach 256 levels and has low requirements for the envi-
ronment that intensifies our deep understanding of the image. Stereo
vision technology in the field of computer vision has always been one of
the hot spots of research. In recent years, stereo matching technology in
stereo vision was the research direction of many scholars. The disparity
map obtained by stereo matching technology is widely used in many
intelligent fields. Such stereo matching can be used in the volumetric
estimation of tumors in the domain of e-health analytics [9–11], inser-
tion of 3D products [12,13] in scenes for product placements [14–16],
reconstruction of cloud base height for atmospheric analysis [17,18],
and amongst others. The disparity information contained in each pixel
of the disparity map reflects the three-dimensional information of the
scene, which has important application value for robot map construc-
tion (three-dimensional reconstruction), obstacle avoidance navigation
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and many other fields. The image source of this technology is usually
captured by a binocular camera [19,20], which captures two images
from left and right perspectives, so as to carry out the stereo matching
operation.

Existing stereo matching methods can be roughly divided into two
categories. The first category, named fixed template methods, are de-
signed with the pre-defined convolution template parameters. The
second category named adaptive template methods, only take the dis-
tribution of gray difference as one of the judgment conditions, with
the limited cost value of calculation. Due to the simplicity of the
efficiency, the second category is one of the mainstream methods of
stereo matching. However, they exhibit the following shortcomings and
our motivation is to solve these issues.

• During the feature region extraction of stereo matching, these
algorithms require measuring the distance of regions (viz., Ham-
ming distance). However, it is difficult to accurately measure
the texture distribution of the region. This may lead to difficulty
during matching.

• The templates used in such stereo matching algorithms are rectan-
gles with a fixed size. However, most of the natural images exhibit
rich information. Therefore, applying fixed size templates tend
to lose some visual sensitive information, such as edge points,
and contour points, leading to a reduced performance of stereo
matching accuracy.

To solve the aforementioned issues, we propose an attentional
ulti-directional convolutional network (AMDCNet) for stereo match-

ng. AMDCNet first detects the edge points, contour points and other
isual sensitive areas of an image, and analyzes the texture distribution
ifference between them and smooth areas. Then it builds the weight
actor of visual sensitivity and guides the attentional direction of the
egree of freedom extension in the subsequent aggregation stage. In the
ggregation stage, AMDCNet constructs a multi-directional extension
emplate by using the weight factor with vision induced attention and
enerates an image by processing covered pixels with the guidance of
he template.

The main contribution of AMDCNet is twofold:

• AMDCNet introduces a visual sensitivity factor in the cost calcula-
tion stage and constructs a multi-directional aggregation template
by using visual sensitivity factor as attention to improve the
matching degree.

• AMDCNet produces promising results in mismatching rate, dispar-
ity estimation, matching precision experiments, compared with
several state-of-the-art stereo matching methods. The code related
to this paper is available here:
https://github.com/WangHewei16/Attentional-Multi-Directional
-Convolution-Network.

This paper is organized as follows. Section 2 analyzes and discusses
he relevant algorithms of stereo matching with their advantages and
isadvantages. Section 3 describes AMDCNet in details. Section 4 con-
ucts experiments on three datasets: Middlebury, Scene Flow and KITTI
015 datasets. Section 5 concludes this paper with future work.

. Related works

In this section, we review the related works on stereo matching from
hree angles: the process of stereo matching, region-to-region matching
lgorithm, and point-to-point matching algorithm.

.1. The process of stereo matching

The first stereo matching technology was proposed by Marr at
he end of the 1960s [21]. This opened up the area for research of
2

tereo matching technology. Stereo matching algorithms can be roughly
ivided into two categories: local matching and global matching. After
ecades of development, a variety of stereo matching research contin-
es to emerge. The process of stereo matching can be divided into four
tages:

1. Cost calculation;
2. Cost aggregation;
3. Calculation of initial disparity map;
4. Disparity optimization [22].

The process of cost calculation is usually to determine the initial
generation value by calculating the gray value difference of three
channels of a pixel in the left and right view images. The cost ag-
gregation stage can be regarded as a filtering operation, in which the
cost obtained in the previous stage is aggregated. In the first step, the
parallax value of a single pixel is calculated at the cost, and these pixels
are isolated points, often accompanied by a lot of noise, so a similar
filtering process is needed to optimize. After aggregating the isolated
parallax values in the previous step, we can get an image that is close
to the real parallax image. In the next step, we need to select the most
appropriate parallax value for the generated multiple parallax values,
and often select the parallax corresponding to the minimum generation
value. In global stereo matching, the energy function is used to generate
a disparity map. The optimization of parallax can be considered a post-
processing process. It further optimizes the parallax value obtained
above. This is one of the commonly used methods that includes left–
right consistency detection, regional voting, linear interpolation and
other methods, as well as relatively simple median filtering and other
operations. The optimization phase can usually improve the matching
effect.

2.2. Region-to-region matching algorithm

With the development of stereo matching technology, many scholars
have used this area for research purposes. Simoncelli et al. proposed
Sum of Absolute Differences (SAD) stereo matching algorithm based
on the gray difference [23]. Based on the former, Da et al. improved
the algorithm and used the gray features of the image to find the
optimal matching region [24]. Some scholars use the whole image of
the characteristics of stereo matching to meet the requirements of the
parallax map. Wang et al. in [25] proposed a novel stereo matching
algorithm where they introduced the visual sensitivity factor in the
cost calculation stage of the matching process for an matching. In [26],
Sun et al. proposed a single direction stereo matching algorithm, which
makes various limit constraints between the image and another image
to be matched, and finds the optimal pixel in another image. Yin et al.
used the threshold of color to segment the processing image, and then
fitted the segmented region, and used the energy function minimization
to optimize the result image [27]. However, the threshold used for
color segmentation in his research is very strict, which is easy to cause
over-segmentation and under segmentation. Similar to the SAD and
Normalized Cross-Correlation (NCC) algorithm, Wang et al. extracted
local operators and proposed a real-time matching method, which can
quickly compute the result image, but its matching effect is poor, which
affects the subsequent application [28].

Zabih et al. have first developed a nonlinear stereo matching al-
gorithm that is based on the premise of less time consumption to
obtain a better matching effect of the image [29]. The emergence of
this method promotes the development of stereo matching technology,
but its limitations are also relatively large, and the matching effect
is poor in non-smooth areas. This transformation method is highly
dependent on the only pixel in the region template. Noise has a great
impact on the cost calculation process, resulting in the calculation
of a large deviation of the parallax value that greatly reduces the
image matching effect. After this method was proposed, many scholars

have improved it, mainly from the overall image matching effect. For
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instance, Fan et al. divided the noise fluctuation range in the matching
process to prevent excessive noise from affecting the image matching
effect [30]. Similarly, Men et al. used the gradient value, changed
direction and gray information as the cost of image matching [31].
Guo et al. constructed the energy function of local information based
on census stereo matching algorithm, which improved the matching
effect [32].

Some scholars put forward new ideas according to the limitations
of the algorithm proposed by Zabih et al. [29] in the stage of cost
aggregation and post-processing optimization. For example, Chai and
Cao [33] fused the SAD algorithm with census algorithm according
to the characteristics of better local matching effect, so that the gray
difference can guide the cost calculation process. In the process of
parallax refinement, a median filter is mainly used to eliminate iso-
lated noise and ‘‘bad points’’, and to reduce the cost, quadratic linear
interpolation is used to further improve the image matching effect.
However, the initial cost of the above method is relatively simple and
the robustness is low, so the matching effect of the initial disparity
map is not high, and the improvement of the overall image quality is
limited. In the process of cost aggregation, the rectangular template
is used to aggregate the generation value. This fixed template usually
loses a lot of important information and affects the parallax effect.
Therefore, on this basis, Zhang et al. [34] proposed a relatively simple
cross extension template, which sets the extension condition as gray
difference and distance difference to guide the cost aggregation process.
Mei et al. [35] enhanced the robustness of automatic growth based on
the former and added a third constraint condition, which made the
template construction closer to the distribution of texture features in
the image region, and improved the matching degree of the image to
a certain extent. However, the construction of constraint conditions in
the aggregation process was relatively simple, and the isolated points
in the disparity map were lacking. The matching accuracy still needs to
be improved. Based on the improvement of disparity optimization and
cost aggregation in stereo matching, more new matching methods are
proposed, such as the sub-pixel difference method proposed by an et al.
From the perspective of disparity optimization, which can improve the
disparity map matching effect by 1%–2% [36], for instances, Zhang
et al. [37] and Shan et al. [38] improve the matching effect from
the aggregation process. One is to improve the matching accuracy
and introduce the regularization term in the aggregation stage whose
advantage is to combine a variety of aggregation algorithms; the other
is to improve the time-saving performance of stereo matching, using
micro adaptive template window for aggregation, and using parallel
processing for the whole process to save time and cost. De-Maeztu
et al. [39] introduced the concept of the gradient similarity-matching
in the aggregation stage to further constrain the calculation method of
the initial cost to improve the matching effect.

2.3. Point-to-point matching algorithm

In addition to the region based matching method, the method
based on feature point extraction can also obtain the corresponding
parallax image. At present, the widely used feature matching methods
mainly include ORB [40], SIFT [41] and SURF [42], whose principle
is basically to establish the scale by extracting the feature points on
the image (often with obvious structural features such as edge contour,
corner, inflection point, etc.). The degree space guarantees its scale
in-variance, and then the descriptors are generated by the gradient di-
rection of the feature points. Finally, the matching results are obtained
by matching feature vectors, but the feature-based matching methods
often cause disparity discontinuity due to the sparse nature of feature
points. There are many mismatched points, and the generated 3D point
cloud is sparse, which affects the reconstruction effect. In this paper,
the processing method of feature points is not described in detail.

To be specific, we briefly introduce the classic census algorithm,
which is a local region matching algorithm based on nonlinear trans-
formation. It is mainly judged according to the gray difference of the
3

Fig. 1. Census Principle. Clockwise comparison begins in the position of upper left
corner. The values in the 3 × 3 template represent the pixel distribution of a certain
area in the image, and each area can be represented by a string of binary codes. Finally,
the Hamming distance of the two binary strings is calculated to be 2.

neighboring pixels around the target point. Suppose that in a pixel
covered by a 3 × 3 rectangular template, the gray difference between
the central point and the surrounding pixels is made when the pixel is
larger than the target point. When it is smaller than the target point, it
is marked with 0. The principle formula is as follows:

𝑙(𝑝, 𝑝′) =
{

0, 𝑖𝑓 (𝑝 > 𝑝′)
1, 𝑖𝑓 (𝑝 < 𝑝′)

𝐶𝑒𝑛𝑠(𝑝) = ⊗
𝑝′∈𝑊 (𝑢,𝑣)

𝑙(𝑝, 𝑝′)
(1)

where 𝑝 represents the target point under the template, that is, the
center pixel, 𝑝′ represents the neighboring pixels, and 𝑊 (𝑢, 𝑣) which
is assumed to be a 3 × 3 rectangular template, represents the central
pixel of the window. Through the above model, the pixels under the
template can be reclassified, and then the template can be moved to
traverse the whole image. Finally, many binary strings similar to bit
code can be obtained. These strings reflect the texture distribution of
the template region to a certain extent, and can roughly represent
the feature information of the region. Then, from another image to
be matched, we plan the same operation as above: find the region
similar to the feature information of the region, complete the matching
and calculate the parallax. The judging condition is selected by the
Hamming distance. The specific schematic diagram is shown in Fig. 1.
The census algorithm calculation is as follows: from clockwise from the
top left, we compare each number to the center number. If the number
is larger than the center number, the bit calculation result is 0. If the
number is smaller or equal to the center number, the bit calculation
result is 1.

However, this method also has many drawbacks. For instance, it
only takes the distribution of gray difference as one of the judgment
conditions, and the cost value of calculation is limited. Moreover, the
template used in this method is a rectangle, and most of the images
processed are rich in information, so it is easy to lose some visual
sensitive information, such as edge points, contour points and so on.
According to the algorithm principle, two groups of binary string codes
are obtained as shown in Fig. 2, which are the same as those in Fig. 1.
The calculated value of Hamming distance is also figured out, but the
texture distribution of the region they represent is vastly different, so
it is easy to cause the phenomenon of matching failure.

3. AMDCNet

AMDCNet consists of three stages (see Fig. 3 as a flowchart of
AMDCNet). In the sensitive points extraction stage, AMDCNet detects
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Fig. 2. Different regions of images. The values in the 3 × 3 template represent the
pixel distribution of a certain area in the image, and each area can be represented by
a string of binary codes. Finally, the Hamming distance of the two binary strings is
calculated to be 0.

the edge points, contour points and other visual sensitive areas in the
image, analyzes the texture distribution difference between them and
smooth areas, and guides the judgment weight of degree of freedom
extension. In the multi-directional template matching stage, AMDCNet
constructs a multi-directional extension template, then, extended pixel
length is guided according to the attention, which is induced by visual
sensitivity, finally, AMDCNet completes the whole image processing.
In the optimization stage, AMDCNet uses the left–right consistency
detection method to further reduce the error matching rate.

3.1. Extract the visual sensitivity factor

As shown in Fig. 4, the template is divided into two directions:
horizontal 𝐻𝑥 and vertical 𝐻𝑦, and convolution operation is performed
on the covered pixels through the two directions, and two candidate
factors are extracted subsequently. One represents the brightness dif-
ference in each direction, and the other represents the directivity of
the gradient. We use this factor to calculate the visual sensitive area.
The brightness difference is calculated as follows:

𝐺𝑥 =𝐻𝑥 ∗ 𝐴

𝐺𝑦 =𝐻𝑦 ∗ 𝐴
(2)

where ∗ denotes the convolution operator, 𝐴 is the input image, 𝐺𝑥 is
the transverse brightness value, and 𝐺𝑦 is the longitudinal brightness
value. By summing the absolute values of the two, the gray value of a
‘‘point’’ representing the region can be obtained as follows:

𝐺 =
√

𝐺2
𝑥 + 𝐺2

𝑦 (3)

The calculated 𝐺 is used to match and guide the two images. We use
the Hamming distance between the binary strings to represent the first
generation value to highlight the grayscale changes in the two regions.
Then, we further judge whether the difference of 𝐺 between the two
regions is less than a certain threshold. If two regions exhibit different
gray levels but with the same sensitivity, then we set it as a candidate
matching, and further obtain the parallax between the two images.
The process of sequential judgment by two generations of values is
expressed by:

𝑓𝑠(𝑝, 𝑑) = 1 − exp
[

−
𝐶𝑠(𝑝, 𝑑)

𝜆𝑠

]

𝑓𝑔(𝑝, 𝑑) = 1 − exp
[

−
𝐶𝑔(𝑝, 𝑑)

] (4)
4

𝜆𝑔
where 𝑝 represents the current pixel, 𝑑 represents the horizontal dis-
placement difference of the points in the two images, 𝐶𝑠, 𝐶𝑔 represent
the cost of the points in the two positions, respectively, and 𝑓𝑠 is the
mapping value of 𝐶𝑠 after a certain transformation and gray approxima-
tion. After gray screening, the second cost value, also visual sensitivity,
𝑓𝑔 is calculated and screened. 𝜆 is an empirical parameter, which makes
these two kinds of generational values project to the interval of 0 and
1 using an index.

The above method can be used to calculate the initial disparity
map of the two images, but this is not the best result. This paper
proposes a cost aggregation algorithm based on the non-directional
growth template controlled by the visually sensitive directional factor.

3.2. Construct an attentional multi-directional aggregation template

We construct an attentional multi-dimensional aggregation template
in this section. Aggregation of AMDCNet is not a simple superposition,
but through visual sensitivity factor proposed in Section 3.1 as atten-
tion. The visual sensitivity direction of a certain area can be easily
obtained. The calculation is as follows:

𝜃 = arctan(
𝐺𝑦

𝐺𝑥
) (5)

where the angle value 𝜃 obtained by the above formula is called the
visual acuity direction factor, and can be regarded as the sensitivity
direction especially when the gray level of images changes greatly. The
pixels and areas in the image will produce such direction factors. There-
fore, we can use this factor to guide the aggregation results in the next
stage of aggregation. This paper proposes a multi-degree-of-freedom
template based on orientation factors.

AMDCNet builds an aggregation template for pixels. This template
is not a fixed rectangular window, but an adaptive template with a
constantly changing shape. Such an adaptive template will meet the
four-degree-of-freedom growth decision condition. The specific process
is as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝑠(𝑝1, 𝑝) < 𝐿1
𝐷𝑐 (𝑝1, 𝑝) < 𝑓 (𝜏1, 𝜃)
𝐷𝑐 (𝑝1, 𝑝1 + (1, 0)) < 𝜏2
𝐷𝑐 (𝑝1, 𝑝) < 𝑓 (𝜏3, 𝜃), 𝑖𝑓 𝐿1 < 𝐷3(𝑝1, 𝑝) < 𝐿2

with 𝜏3 < 𝜏2 <= 𝜏1, 𝐿1 < 𝐿2

(6)

where 𝑝 represents the central pixel, and 𝑝1 represents a point extending
a certain distance. The function 𝐷𝑠 is used to generate the distance
between two points and ensure that its value is less than a certain
threshold 𝐿1 or 𝐿2. 𝐷𝑐 represents the color similarity of the two points,
which is also related to the sensitive direction. When the direction is
similar to the extended distance, it means that the color difference
between the point and the reference point is greater. We set a gray
threshold 𝛾1 on this basis and judge the gray scale difference between
the two points. If it is less than its threshold, it continues to extend
in this direction, and 𝐿1 represents a distance threshold. The third
degree of freedom judgment is to compare the forward time during
the extension process. When a newly extended point still out of the
threshold with the reference point, it also needs to be compared with
the point at the previous moment in grayscale. Similarly, it sets a gray
scale threshold as the criterion for the two points. If only this condition
is met, it is still can continue to extend. The judgment criterion for
the fourth degree of freedom is to mutually restrict the distance and
color. When the extension point reaches a certain distance but does
not exceed the maximum distance limit, we reduce the previous color
threshold 𝛾3 for more stringent screening. Similarly, when the extension
continues, it is still adjusted by the direction factor, and the maximum
distance parameter will be set at this time. When the extension distance
exceeds the threshold, the extension will be terminated immediately.
Fig. 5 shows a growth polymerization template of the degree of freedom
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Fig. 3. Architecture overview of proposed AMDCNet. We perform three operations on the image: (a) Perform convolution template to get the visual sensitivity factor; (b) Calculate
the initial cost of the image and construct the multi-directional aggregation template. (c) Detect left–right consistency to optimize.
Fig. 4. Convolution template graph. The template has vertical and horizontal direc-
tions. Left denotes the horizontal convolution template 𝐻𝑥 and right denotes the vertical
convolution template 𝐻𝑦. Convolute a region of the image in two directions to get a
new factor representing the region.

based on the direction factor control. The leftmost figure is the cross
template extended from each reference point, and the rightmost figure
is the result of further expansion in the upper and lower directions ac-
cording to the above rules based on each polymerization arm extended
from the left figure. The template in the right subfigure of Fig. 5 is the
cost aggregation template that should be used in the end.

Through the above aggregation template, the initial cost calculated
at the beginning is aggregated to obtain a more refined parallax image.

3.3. Parallax optimization of AMDCNet: left–right consistency detection

We utilize an optimization algorithm named left–right consistency
detection to further reduce the error matching rate. For the processed
parallax image, AMDCNet carries out the final optimization algorithm,
to make the test parallax value closer to the real value. The purpose
of the optimization is to further propose some redundant points and
improve the matching accuracy. This process is often considered the
post-processing stage of the stereo matching process. The optimization
algorithm used is the combination of left–right consistency detection
and region voting: first, the left–right consistency detection is used to
distinguish the occluded point and the mismatched point in the image.
For the occluded point 𝑃 , the first non-occluded point appears in the
left and right directions, which is recorded as 𝑝𝑙 and 𝑝𝑟. The minimum
value of the two is assigned to the 𝑃 point to complete the filling. For
the mismatched points, the region voting method is adopted. The gray
distribution of all pixels in the support window area is counted, and the
parallax value with the most frequent occurrence is selected to replace
the parallax value of the point. Finally, the image is processed with
quadratic linear difference operation, and the parallax value of a point
is interpolated with the following formula:

𝑑𝑝 = 𝑑 −
𝐶(𝑝, 𝑑 + 1) − 𝐶(𝑝, 𝑑 − 1) (7)
5

2(𝐶(𝑝, 𝑑 + 1) + 𝐶(𝑝, 𝑑 − 1) − 2𝐶(𝑝, 𝑑))
where 𝐶 represents the replacement value of 𝑝-pixel points calculated
in this method, and 𝑑 is the horizontal displacement interpolation for
𝑝 points in the left and right view images.

4. Experiments and discussion

In this section, we discuss the benchmarking experiments that are
conducted in this research.

4.1. Datasets

The experimental datasets used in this paper are from Middlebury
official test datasets, Scene Flow dataset and KITTI 2015 dataset. These
datasets have also been used in many pieces of literature [36,37,43–
46]. To be specific, Middlebury datasets are mainly used for vision
processing of binocular images and can be used for image restoration,
stereo matching, image recognition and other operations as recom-
mended by the majority of scholars. We have used the Middlebury
dataset for benchmarking classical stereo matching algorithms. This is
because most of these classical algorithms are compared in this dataset.
In order to benchmark the more up-to-date methods, we have chosen
the KITTI and Scene Flow datasets. We have provided a subjective
evaluation of the recent stereo methods in the latest datasets. We have
proceeded in this manner, because this helps in a fair comparison
amongst all the benchmarking stereo matching algorithms. In this pa-
per, we select four kinds of images in Middlebury 2.0 for experiments,
which contains 24 kinds of left and right view images, including the
color images and the real parallax images. AMDCNet has tested on
Win7 64 bit system by using Visual Studio software and OpenCV2.4.9
framework.

4.2. Parameter setting

Firstly, we do quantitative experiments on distance threshold 𝐿1
and color threshold 𝛾1 and choose a more appropriate parameter value.
In this paper, four kinds of images in the dataset are selected for
experiments, which are Tsukuba, Cones, Venus and Teddy. As shown in
Fig. 6, we assign different sizes to the distance threshold and the color
threshold and judge whether the selected parameters meet most of the
images and are worth being selected as empirical parameters according
to the error matching rate of the aggregation results.

Mismatch rate represents the percentage of the number of mis-
matches between the test result disparity map and the real disparity
map in the whole image. From the information in Fig. 6, it can be found
that when the color threshold 𝛾1 is between 20 and 21, the efficiency of
image matching is better, and when the threshold is further increased,
there is no more obvious effect. The distance threshold between 17 and
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Fig. 5. The process of constructing the multi-directional aggregation template. For a cross template that each pixel may extend into at a single time (left), we adopt orientation
factors to instruct the growth of template (middle), and then construct the final aggregation template once (right) for the target pixel.
Fig. 6. Mismatch rate with different threshold. The experiment is carried out from the (a) image: color threshold and the (b) image: distance threshold.
21 has a good matching performance of the image, starting from 17,
and the increase of distance threshold 𝐿2 has no great impact on the
results. Therefore, this paper will control the color threshold at 20 to
21, the distance threshold 𝐿2 choose 17 or 18.

4.3. Experiments of AMDCNet versus some non-deep learning methods

In order to prove the effectiveness of AMDCNet, we display the
processed images, using Cones, Tsukuba, Teddy, and Venus in the
dataset. Fig. 7 shows qualitative results of AMDCNet versus Census on
Cones, Tsukuba, Teddy, and Venus (top to bottom). According to the
results, AMDCNet can effectively calculate and generate the disparity
of the original image, and the matching effect is better than that of
classical Census method. Moreover, Fig. 8 shows qualitative results
of visual sensitive area retention of AMDCNet versus classical Census
method [29]. Through the display of subjective images, we can see
that AMDCNet can effectively calculate and generate the disparity
of images, and produce better matching effect than classical Census
method [29]. Moreover, it has been improved and preserved in many
visual sensitive areas, such as ‘‘peak’’, ‘‘lamp’’ and ‘‘table’’.

Next, this paper combines the objective data to prove the effective-
ness of AMDCNet. Table 1 shows the error matching rate of the above
four types of images. These values are obtained by comparing non-
occluded areas. The non-occluded area refers to the image under two
viewing angles. There must be a certain area that is invisible from the
other viewing angle, which indicates that a certain displacement exists
in the horizontal direction. Such invisible areas are called non-occluded
areas. In general, the matching effect of comparison of non-occluded
areas is better than the matching effect of all image areas. As shown
6

Table 1
The error matching rate obtained by various methods.

Algorithms cones tsukuba teddy venus avg%

Census [29] 21.89 27.41 23.43 27.78 25.13
AMDCNet 4.08 2.01 7.82 1.34 3.80
Ref. [30] 4.04 2.53 7.57 1.60 3.93
SG-C [47] 12.92 4.80 8.05 1.91 6.92
Mp-C [37] 6.78 4.50 11.32 3.55 6.53

Table 2
Mismatch rate under different Gaussian noise concentrations.

Noise none 2% 5% 10% 15%

Ref. [33] 4.54 6.67 11.73 26.88 48.63
AMDCNet 3.81 5.01 8.59 17.32 38.41

in Table 1, in the non-occluded area, the matching performance of
AMDCNet is better than the others.

AMDCNet is also more robust than other types of methods. In order
to prove this, we add Gaussian noise of different concentrations to
the four original images and show the comparative results in Table 2,
where ‘‘None’’ means that there is no input noise. AMDCNet in the table
also uses an improved adaptive aggregation template. In addition, the
results in the table show that when the noise concentration increases,
the change degree of the error matching rate of this method is lower,
and the sensitivity to noise is lower.

For the above-processed images, AMDCNet optimizes these images
by left–right consistency detection in order to make the test parallax
value closer to the real value. The picture effect of the above four kinds
of images after optimization is shown in Fig. 9. From the figure, we
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Fig. 7. Results of disparity estimation for Middlebury test images. (a) left image of stereo image pair, (b) ground truth disparity. (c) and (d) disparity map estimated using Census.
(e) and (f) disparity map estimated using AMDCNet. The error area is shown in red. The more red, the worse the matching effect.
Fig. 8. Visual sensitive area retention. It shows the effect of the method for the visual sensitive area in the image, and compares with other methods. top: Census method, bottom:
AMDCNet.
Table 3
Comparison results of different methods.
Algorithms cones tsukuba teddy venus avg%

all nocc all nocc all nocc all nocc

AMDCNet 8.85 3.46 1.26 0.92 10.72 6.09 0.86 0.34 4.06
Ref. [31] 9.26 3.79 4.15 3.62 11.6 5.68 1.87 1.08 5.13
Seg-CT [48] 13.77 6.15 5.40 4.57 11.44 6.27 1.93 1.19 6.34
SAD+CT [33] 7.65 4.09 1.98 1.29 12.60 6.02 0.74 0.53 4.36
GRD [37] 16.13 4.45 3.59 2.72 17.56 7.45 4.12 1.68 7.21
MCADSR [38] 11.1 3.51 4.15 3.62 14.7 7.57 0.87 0.48 5.75
GradAdaptWt [39] 7.67 2.61 2.63 2.26 13.10 8.00 6.99 1.39 5.58
7
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Fig. 9. Disparity images before and after optimization.
can see that the quality is significantly improved after optimization.
After optimization, not only the large-scale ‘‘hole point’’ is removed for
the non-occluded area, but also the isolated incorrect matching points
are compensated by the quadratic linear interpolation, and the orig-
inal boundary contour and other regional structures are maintained.
This paper further compares the error matching rate of the optimized
disparity map, and the results are shown in Table 3. We observe that
GradAdaptWt’s algorithm is suitable for processing and recognizing ob-
jects with shape features like cone. From Table 3, AMDCNet generally
has better results, in addition to the optimization effect of algorithm
GradAdaptWt on cones is better than that of AMDCNet. This is because
the algorithm of GradAdaptWt is more sensitive to the shape of cone,
but AMDCNet has better performance in tsukuba, teddy, venus and
average values.

From Table 3, we can see the difference between NOCC and all,
where the NOCC is the non-occluded area mentioned above, and ‘‘all’’
means the matching of all areas of the image, including the blind area
of parallax. The data of mismatch rate in the table objectively proves
the effectiveness of the AMDCNet, which has more efficiency than the
same kind of traditional methods.

AMDCNet is not only applied to the mentioned four types of images
but also experimented with other images in the dataset. The experimen-
tal images are shown in Fig. 10. From this figure, we can observe that
AMDCNet produces a good matching effect for most of the binocular
vision images.

4.4. Experiments of AMDCNet versus state-of-the-art deep learning methods

Next, we compare AMDCNet with some advanced deep learning
methods. Wang et al. [44] proposed a multi-task attention stereo net-
work (MASNet) to integrate the feature information from stereo image
8

pairs for disparity estimation. Compared with the traditional CNN
algorithm, AMDCNet deepens the number of network layers, embeds
the pooling layer into the convolution layer, and provides a better
measure for the calculation of parallax. However, this method is more
inclined to the optimization process in stereo matching, and cannot
provide a more detailed description for the calculation of early cost
characteristics. Chang et al. [45] proposed a pyramid stereo matching
network (PSMNet) consisting of two modules: spatial pyramid pooling
and 3D CNN. The spatial pyramid pooling module takes the advantage
of the capacity of global context information by the aggregating context
in different scales and locations to form a cost volume. PSMNet is
similar to the way of constructing an image pyramid, but for high-
resolution images, its matching effect will be limited because the
influence of the CNN convolution layer is ignored in the process of
network construction. Liu et al. [46] proposed a richer convolutional
feature network architecture (RCF), increasing the detection of edge
features, having a good matching effect for high-resolution images, and
using convolution mode to refine and extract features. However, this
method does not have much workload for parallax optimization.

In [49], the authors proposed a local stereo matching algorithm that
aims to improve the quality of stereo matching algorithm by solving
the multi-label problems. Hong et al. in [50] proposed an almost near
real-time local stereo matching algorithm possessing fast computational
time. Similar fast computational time is achieved in [51], that performs
depth enhancement using RGB-D guided filtering. In [52], the authors
have described a generic framework for parallelizing dense matching
procedures using CUDA (Compute Unified Device Architecture) pro-
gramming. Furthermore, the idea of fast guided image filtering is not
restricted to images, but extended to real-time 3-dimensional (3-D)
video services with reduced computational complexity [53].
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Fig. 10. Performance evaluation using Middlebury test data. (a) left image of stereo image pair, (b) ground truth disparity, and (c) disparity map estimated using AMDCNet. Top
to bottom: four types of images are art, baby, dools and book.
Table 4
Matching precision of different methods before and after optimization in non-occluded areas.
Algorithms cones tsukuba teddy venus avg%

No-refine refined No-refine refined No-refine refined No-refine refined

AMDCNet 4.10 3.46 2.01 0.92 7.84 6.09 1.35 0.34 3.26
MASNet [44] 4.85 3.25 2.58 1.04 8.04 4.59 1.86 0.64 3.35
PSMNet [45] 4.21 3.98 1.86 0.99 9.51 8.45 0.89 0.29 3.77
RCF [46] 3.97 3.89 2.13 1.29 6.84 6.02 1.73 0.61 3.35
4.4.1. Middlebury
AMDCNet is compared with these advanced algorithms from before

optimization and after optimization. The targeted area is non-occluded.
The comparison of the error matching rate is shown in Table 4. It can
be seen from the table that before optimization, the effect of stereo
matching depends more on the description of detailed features. The
false matching rate of MASNet is higher than AMDCNet. However,
after adopting the optimization algorithm, the optimization effect is
slightly better for some images. Although the optimization algorithm
is better than that of AMDCNet, it needs to learn the features in
advance, AMDCNet can be optimized directly through the left–right
consistency of features, and the efficiency is relatively high. Through
the image Teddy, we can see that the effect of PSMNet will be sig-
nificantly reduced in high-resolution images, which shows that its
general performance is poor. While the RCF has certain advantages in
9

feature convolution learning before optimization, but its optimization
stage is carried out by using the optimization algorithm of AMDCNet.
Therefore, comprehensively speaking, AMDCNet is better than other
methods. Moreover, AMDCNet does not need to rely on high hardware
requirements, reduces the feature learning stage, and the equalization
ability is more prominent. Fig. 11 shows the results of disparity esti-
mation for Middlebury test images. It can be seen from the baby figure
that the results produced by PSMNet show that the baby’s arm and head
are obviously connected, and its treatment of detail effect is not good.
Although the results obtained by RCF can better retain the details,
thanks to its relatively perfect convolution network, it has lost a cer-
tain optimization effect, resulting in many unnecessary ‘‘details’’ being
exposed, thus reducing the overall matching effect. Other images have
similar phenomena. Combined with these comparative experiments, it
can be seen that although the method used in deep learning can greatly
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Fig. 11. Results of disparity estimation for Middlebury test images. (a) left image of stereo image pair. (b) ground truth disparity. For each input image, the disparity maps
obtained by (c) AMDCNet, (d) PSMNet, and (e) RCF.

Fig. 12. Results of disparity estimation for Scene Flow test images. (a) left image of stereo image pair. (b) ground truth disparity. For each input image, the disparity maps
obtained by (c) AMDCNet, (d) PSMNet, and (e) RCF.

Fig. 13. Results of disparity estimation for KITTI 2015 test images. (a) left image of stereo image pair. For each input image, the disparity maps obtained by (b) AMDCNet, (c)
GWC-Net, and (d) Attention-guided aggregation stereo matching network [43].
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improve the matching effect, it will have some disadvantages more or
less. For stereo matching technology, balance is often more important.
Therefore, AMDCNet not only maintains good structural performance
but also reduces the false matching rate. As it exhibits a satisfactory
performance balance, there is no need to preprocess the image such as
feature learning in advance, nor to build a complex network architec-
ture trained on large-scale stereo-matching datasets. Most existing deep
learning methods require training on different datasets for different
instances to achieve acceptable performance, while AMDCNet gains a
good performance on all kinds of instances without complex training
and validation procedure.

4.4.2. Scene flow
We also use two images in the Scene Flow datasets for experiments,

which are consistent with the previous figures. Fig. 12 shows the results
of experiments. By analyzing the qualitative results of the figure, we
can see that the optimized effect of AMDCNet is not as good as PSMNet,
and the efficiency of edge matching is slightly lower than RCF, but
AMDCNet has more advantages in a balance between optimization
effect and efficiency of edge matching.

4.4.3. KITTI 2015
GWC-Net [54] proposes a high-dimensional feature grouping de-

scription method, which forms the high-dimensional feature description
of two images by connecting multi-level unitary features, and groups
them according to the dimension correlation to find the grouping
feature correlation at the corresponding position of the two images.
The method Attention-guided aggregation stereo matching network in
Zhang et al. [43] further improves it and leads to the four-dimensional
cost measurement, further guiding the distinction and connection of
features. This kind of method can provide great support for the cost
calculation stage. In the aggregation stage, the pyramid is constructed
according to the scale pyramid, different scales are divided, and a cross-
scale aggregation template is constructed for aggregation operation.
However, it also has some disadvantages, for instance, its level is
basically window level, and there is a lack of consideration for the
accurate pixel level. Therefore, for image matching in complex scenes,
there will be errors in the local detail effect.

In order to prove the universal applicability of AMDCNet, the cur-
rent hot KITTI 2015 dataset is selected for experiments, and compared
with the above two advanced algorithms to analyze the advantages
and disadvantages of the algorithm from a qualitative point of view,
as shown in Fig. 13. It can be seen from the experimental results in
the first row that AMDCNet can display the contour of the car more
comprehensively, and the parallax acquisition effect of street lamps
is better. From the third and fourth columns, the detailed description
effect of GWC-Net is significantly better than the Attention-guided
aggregation stereo matching network. The second row of images is
consistent with it and it can be seen that the parallax obtained by this
method is more accurate and the detail display effect is better for closer
scenes, but there are some deficiencies in the matching effect for areas
close to the left and right boundaries that areas prone to occlusion and
areas with far-field of view. However, the judgment of stereo matching
efficiency is more for the more obvious regions. Therefore, AMDCNet
is more stable.

5. Conclusions and future work

This paper studies the stereo matching technology in computer
vision and identifies a few shortcomings in the existing methods. We
propose AMDCNet for stereo matching that is based on sensitivity
value and multi-directional template. In the multi-directional template
matching stage, the sensitive factor is used as guidance for constructing
a multi-directional extension template and calculating the second gen-
eration value whereas the direction is used to develop the construction
process of the aggregation template. The effectiveness of AMDCNet is
11
demonstrated via benchmarking experiments. It mainly uses the visual
display in the image to analyze the regional structure retention and
the matching performance. Finally, the experimental results show that
AMDCNet can effectively deal with the matching image and it is very
effective as compared with other relevant methods.

For future work, we intend to perform subjective evaluation on
large-scale datasets such as KITTI and Scene Flow datasets. We will
compare our proposed AMDCNet approach with other benchmarking
guided filtering approaches. We also intend to further study the deep
learning methods on stereo matching and its performance on the KITTI
dataset. Especially, we will focus on the reuse and fusion of visual
transformer on specific binocular stereo matching tasks, model de-
sign for binocular image inputs, the research on new encoder and
decoder for depth output and the loss function together with training
hyperparameters.
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